Rabu, 16 Oktober 2013

LAPORAN PENDAHULUAN OTTO (MESIN BAKAR BENSIN)

LAPORAN PENDAHULUAN
MESIN MOTOR BENSIN (OTTO)

A.    Maksud dan Tujuan

1.      Diharapkan agar para praktikan dapat mengetahui proses dan cara kerja yang telah ditentukan dengan baik dan benar.
2.      Diharapkan agar para praktikan mengetahui fungsi dan kegunaan dari alat-alat yang digunakan pada praktek mesin bensin.
3.      Diharapkan agar para praktikan dapat menyelesaikan lembar kerja dengan baik dan benar.
4.      Untuk mengetahui grafik karakteristik dari motor bensin yang diuji kemudian hasilnya digambarkan dalam bentuk grafik karakteristik.

B.     Latar Belakang
Siklus Otto adalah siklus thermodinamika yang paling banyak digunakan dalam kehidupan manusia. Mobil dan sepeda motor berbahan bakar bensin (Petrol Fuel) adalah contoh penerapan dari sebuah siklus Otto.
Secara thermodinamika, siklus ini memiliki 4 buah proses thermodinamika yang terdiri dari 2 buah proses isokhorik (volume tetap) dan 2 buah proses adiabatis (kalor tetap). Untuk lebih jelasnya dapat dilihat diagram tekanan (p) vs temperatur (V) berikut:

Proses yang terjadi adalah :
1-2 : Kompresi adiabatis
2-3 : Pembakaran isokhorik
3-4 : Ekspansi / langkah kerja adiabatis
4-1 : Langkah buang isokhorik



Beberapa rumus yang digunakan untuk menganalisa sebuah siklus Otto adalah sebagai berikut :
1. Proses Kompresi Adiabatis
2. Proses Pembakaran Isokhorik
3. Proses Ekspansi / Langkah Kerja
4. Kerja Siklus
5. Tekanan Efektif Rata-rata (Mean Effective Pressure)
6. Daya Indikasi Motor

Dimana parameter – parameternya adalah :
p = Tekanan gas (Kg/m^3)
T = Temperatur gas (K; Kelvin)
V = Volume gas (m^3)
r = Rasio kompresi (V1 – V2)
Cv = Panas jenis gas pada volume tetap ( kj/kg K)
k = Rasio panas jenis gas (Cp/Cv)
f = Rasio bahan bakar / udara
Q = Nilai panas bahan bakar (kj/kg)
W = Kerja (Joule)
n = Putaran mesin per detik (rps)
i = Index pengali; i=1 untuk 2 tak dan i=0.5 untuk 4 tak
z = Jumlah silinder
P = Daya ( Watt )

C.    Landasan Teori

Siklus Otto adalah siklus ideal untuk mesin torak dengan pengapian-nyala bunga api.Pada mesin pembakaran dengan sistem pengapian-nyala ini, campuran bahan bakar dan udara dibakar dengan menggunakan percikan bunga api dari busi. Piston bergerak dalam empat langkah (disebut juga mesin dua siklus) dalam silinder, sedangkan poros engkol berputar dua kali untuk setiap siklus termodinamika. Mesin seperti ini disebut mesin pembakaran internal empat langkah. Skema berikut memperlihatkan setiap langkah piston dan pernyataan prosesnya pada diagram P-v untuk kondisi aktual mesin pengapian-nyala empat langkah,
Dari skema di atas tersebut, kondisi awal kedua katup hisap dan buang dalam keadaan tertutup sedangkan piston pada posisi terendahnya yaitu pada titik mati bawah (Bottom Dead Center/BDC). Selama langkah kompresi, piston bergerak ke atas, di mana campuran udara-bahan bakar dikompresi. Sesaat sebelum piston mencapai posisi tertingginya yaitu titik mati atas (Top Dead Center/TDC), percikan bunga api ditimbulkan oleh busi sehingga membakar campuran, yang kemudian menaikkan tekanan dan temperatur sistem. Tekanan gas yang tinggi tersebut mendorong piston ke bawah sehingga menyebabkan poros engkol berputar, selama langkah usaha (langkah ekspansi) ini dihasilkan kerja keluaran yang bermanfaat. Pada ujung langkah ini, piston pada posisi terendahnya untuk menyelesaikan siklus yang pertama (mesin satu siklus), sehingga isi silindernya berupa sisa pembakaran.
Piston bergerak kembali ke atas membersihkan gas buang melalui katup buang (langkah pembuangan), kemudian piston turun kembali ke bawah mengambil campuran udara-bahan bakar yang baru melalui katup hisap (langkah hisap). Sebagai catatan bahwa tekanan dalam silinder di atas tekanan lingkungan saat langkah buang dan berada di bawah tekanan lingkungan saat langkah hisap.
Analisis termodinamika untuk kondisi aktual tersebut dapat disederhanakan bila digunakan asumsi udara-standar yang berlaku sebagai gas-ideal. Karenaitu, siklus untuk kondisi aktual dimodifikasi menjadi sistem tertutup yang disebut sebagai siklus Otto ideal. Skema dan pernyataan prosesnya pada diagram P-v dan T-s seperti terlihat pada gambar berikut,

Gambar Siklus Otto Ideal


Siklus Otto ideal terdiri dari empat proses reversibel internal, yaitu proses 1-2 kompresi isentropik, proses 2-3 penambahan kalor pada volume tetap, proses 3-4 ekspansi isentropik, dan proses 4-1 pelepasan kalor pada volume tetap. Karena siklus Otto ideal ini merupakan sistem tertutup, maka ada beberapa asumsi yang digunakan yaitu (1) mengabaikan perubahan energi kinetik dan potensial, dan (2) tidak ada kerja yang timbul selama proses perpindahan kalor.
Efisiensi termal siklus Otto ideal ini tergantung dari besarnya rasio kompresi mesin dan rasio kalor spesifik dari fluida kerjanya. Efisiensi siklus akan naik bila rasio kompresi dan rasio kalor spesifik semakin besar.

         Sistem bahan bakar (fuel system) terdiri dari beberapa komponen, dimulai dari tangki bahan bakar (fuel tank) sampai pada charcoal canister. Bahan bakar yang tersimpan dalam tangki dikirim oleh pompa bahan bakar (fuel pump) ke karburator melalui pipa-pipa dan selang-selang.kotoran dan benda-benda lainya dikeluarkan dari bahan bakar oleh saringan (fuel filter).
Karburator menyalurkan ke mesin sejumlah bahan bakar yang dibutuhkan berupa campuran udara dan bahan bakar. Sejumlah gas HC yang timbul di dalam tangki dikurangi oleh charcoal canister. Bensin di alirkan dari tangki melalui saringan, selang dan pipa-pipa hisap (suction tube). Bensin yang sudah disaring dikirim ke karburator oleh pompa bahan bakar, dan karburator mencampurnya dengan udara dengan suatu perbandingan tertentu menjadi campuran udara dan bahan bakar. Sebagian campuran udara dan bahan bakar menguap dan menjadi kabut saat mengalir melalui intake manifold ke silinder.

Campuran Udara dan Bahan Bakar
Bahan bakar yang dikirim kedalam silinder untuk mesin harus ada dalam Kondisi mudah terbakar agar dapat menghasilkan efesiensi tenaga yang maksimum. Bensin sedikit sulit terbakar, bila tidak dirubah kedalam bentuk gas. Bensin tidak dapat terbakar dengan sendirinya, harus dicampur dengan udara dalam perbandingan yang tepat. Untuk mendapatkan campuran udara dan bahan bakar yang baik, uap bensin harus bercampur dengan sejumlah udara yang tepat. Perbandingan campuran udara juga mempengaruhi pemakaian bahan bakar.

Perbandingan Udara Dengan Bahan Bakar
Perbandingan udara dengan bahan bakar dinyatakan dalam volume atau berat dari bagian udara dan bahan bakar. Pada umumnya, perbandingan udara dan bahan bakar dinyatakan berdasarkan perbandingan berat udara dengan berat bahan bakar. Bensin harus dapat terbakar keseluruhannya di dalam ruang bakar untuk menghasilkan tenaga yang besar pada mesin. Perbandingan udara dan bahan bakar dalam teorinya adalah 15:1, yaitu 15 untuk udara berbanding 1 untuk bensin.
Tetapi pada kenyataannya, mesin menghendaki campuran udara dan bahan bakar dalam perbandingan yang berbeda-beda tergantung pada temperatur, kecepatan mesin, beban, dan kondisi lainya. Pada table di bawah ini diperlihatkan perbandingan udara dan bahan bakar yang dibutuhkan sesuai dengan kondisi mesin.


Tidak ada komentar:

Posting Komentar